Ofertas personalizadas, una atención al cliente proactiva, detección de los consumidores que presentan un mayor riesgo de abandono... todo es posible con el análisis estadístico de datos aplicado al customer intelligence. Análisis e inteligencia se combinan para entregar a las organizaciones la capacidad de refinar su estrategia, acertar en las próximas acciones a emprender, lograr más clientes e impulsar la lealtad de los que ya tienen.
Para lograr cualquiera de estos objetivos son precisos tres ingredientes: datos, herramientas y el talento necesario que permitirá aplicar las técnicas estadísticas adecuadas teniendo claras las metas a alcanzar. Así:
Cuanto mejor sea la comprensión de los resultados del análisis estadístico de datos, mayor valor podrá extraerse de ellos. Además de la cuantificación de las cosas que facilita la estadística, es necesario buscar el sentido en las métricas y, aun así, es posible que siga faltando un ingrediente más en esta ecuación.
A veces, el análisis estadístico de datos puede no ser suficiente. Al mismo tiempo que se producen importantes avances en las herramientas de cálculo y analíticas; se hace cada vez más necesario complementar el conocimiento obtenido del estudio de los grandes datos con el extraído de interacciones de persona a persona, más directas, con los consumidores. La prueba está en los mismos datos:
- El 85 por ciento de las actualizaciones de medios sociales provienen de los llamados "entusiastas", pero sólo el 29 por ciento de la audiencia de una empresa típica podrían calificarse de esta forma, ya que el 71% restante se encuadrarían en rangos de actitud más moderados (datos de VisionCritical).
- Dado que los usuarios de Twitter se representan sólo alrededor del 10 por ciento de la población, algunos grupos demográficos o sociales no serán representados, por lo que la visión que el análisis estadístico de datos procedentes de esta red social, más que aportar conocimiento, puede alejar de una imagen real y generar confusión (según Colin Strong, un destacado investigador del consumidor en el Reino Unido, que así lo expresa en su obra "Humanizing Big Data").
La perspectiva humana tiene que unirse al esfuerzo tecnológico, y no sólo para extraer conclusiones del análisis estadístico de datos, sino para dirigir la investigación y enriquecer la perspectiva del cliente con la comprensión de los matices de comportamiento, las motivaciones o el porqué detrás de cada decisión que toma un consumidor.
Pese a que lograrlo implica iniciar un largo recorrido, uno de los primeros pasos a dar es el garantizar que el área de IT, los expertos en Big Data, no se encuentran aislados del resto de la organización sino que interactúan con los usuarios de negocio, para promover el conocimiento y encontrar las respuestas que les faltan.
Tal vez te interese leer:
Beneficios de crear una estrategia de relación global con el cliente