{% set baseFontFamily = "Open Sans" %} /* Add the font family you wish to use. You may need to import it above. */

{% set headerFontFamily = "Open Sans" %} /* This affects only headers on the site. Add the font family you wish to use. You may need to import it above. */

{% set textColor = "#565656" %} /* This sets the universal color of dark text on the site */

{% set pageCenter = "1100px" %} /* This sets the width of the website */

{% set headerType = "fixed" %} /* To make this a fixed header, change the value to "fixed" - otherwise, set it to "static" */

{% set lightGreyColor = "#f7f7f7" %} /* This affects all grey background sections */

{% set baseFontWeight = "normal" %} /* More than likely, you will use one of these values (higher = bolder): 300, 400, 700, 900 */

{% set headerFontWeight = "normal" %} /* For Headers; More than likely, you will use one of these values (higher = bolder): 300, 400, 700, 900 */

{% set buttonRadius = '10px' %} /* "0" for square edges, "10px" for rounded edges, "40px" for pill shape; This will change all buttons */

After you have updated your stylesheet, make sure you turn this module off

¿Qué es el sistema manejador de bases de datos?

by Redacción PowerData on agosto 17, 2015
Un sistema manejador de bases de datos (SGBD, por sus siglas en inglés) o DataBase Management System (DBMS) es una colección de software muy específico, orientado al manejo de base de datos, cuya función es servir de interfaz entre la base de datos, el usuario y las distintas aplicaciones utilizadas.

manejo de base de datos

 

Como su propio nombre indica, el objetivo de los sistemas manejadores de base de datos es precisamente el de manejar un conjunto de datos para convertirlos en información relevalante para la organización, ya sea a nivel operativo o estratégico.

Lo hace mediante una serie de rutinas de software que permiten su uso de una manera segura, sencilla y ordenada. Se trata, en suma, de un conjunto de programas que realizan tareas de forma interrelacionada para facilitar la construcción y manipulación de bases de datos, adoptando la forma de interfaz entre éstas, las aplicaciones y los mismos usuarios.

Su uso permite realizar un mejor control a los administradores de sistemas y, por otro lado, también obtener mejores resultados a la hora de realizar consultas que ayuden a la gestión empresarial mediante la generación de la tan perseguida ventaja competitiva. 

Guía gratuita: "Data Management: La gestión de datos eficaz"

Características y funcionalidad

Un sistema SGBD es sinónimo de independencia, una redundancia mínima, consistencia de la información (control de la concurrencia), abstración de la información sobre su almacenamiento físico, así como un acceso seguro y la adopción de las medidas necesarias para garantizar la integridad de los datos.

Estas particularidades son algunos de los rasgos definitorios de un SGBD, cuyos procesos esenciales son la manipulación y construcción de las bases de datos, así como la definición de los mismos. Son características que, a su vez, facilitan el cumplimiento de una serie de funciones relacionadas con muchos de los aspectos apuntados, entre otros la definición de los datos, su fácil manipulación, una rápida gestión, poder representar relaciones complejas entre datos y otros aspectos relacionados con la seguridad y validez de los datos.

Frente a su gran funcionalidad, algunas de sus principales desventajas son, por otra parte: la inversión necesaria para implementar un DBMS en hardware, el software y concimientos que se requieren para ello, la vulnerabilidad a los fallos por su misma centralización y sus deficiencias con algunos tipos de datos (como es el caso de los datos gráficos o multimedia, entre otros.).

Accede al Webinar sobre Master Data Management

Los lenguajes más utilizados en un Manejador de Base de Datos (DBMS)

En lo que respecta a los lenguajes utilizados en un DBMS, cabe destacar el Lenguaje de Manipulación de datos o Data Manipulation Language (DML) para la realización de consultas y manipulación de datos. Especialmente, se utiliza el SQL (Structured Query Language), el DML más utilizado para gestionar datos relacionales, así como el Data Definition Language (DDL), utilizado para definir estructuras y funciones en la realización de consultas. 

El Data Control Language (DCL), por último, también es un lenguaje utilizado en un DBMS por el  administrador, en esta ocasión con el fin de controlar el acceso a los datos de la base de datos.

¡Consulta gratuitamente a uno de nuestros expertos sobre Master Data Management!

El futuro del manejo de base de datos eficiente ya está aquí: se llama IA

Cada vez más, las organizaciones se dan cuenta de que la inteligencia artificial (IA) y el aprendizaje automático aplicados a la gestión y optimización de sus bases de datos, consiguen llevar la autocuración y el autoajuste al siguiente nivel. Estas soluciones, tanto de proveedores de bases de datos como de terceros, permiten que los administradores encargados del manejo de base de datos pasen menos tiempo buscando cuellos de botella y más tiempo haciendo un trabajo más productivo y creativo en apoyo de objetivos de negocio estratégicos.

Para entender cómo las nuevas tecnologías hacen esto posible hace falta saber qué son la inteligencia artificial, el aprendizaje automático y el Deep learning:

  • Inteligencia artificial: es todo lo que una máquina logra imitando ciertas funciones humanas "cognitivas" como el aprendizaje y la resolución de problemas. Existen incontables ejemplos, como los sistemas automáticos de comercio, los vehículos autónomos o los sistemas de entrega con enrutamiento inteligente.
  • Machine Learning, que es como se conoce también al aprendizaje automático, es un subconjunto de IA que utiliza técnicas estadísticas para permitir que los ordenadores modelen y predigan resultados utilizando conjuntos de datos. Los filtros de correo electrónico, sistemas de detección de fraude y sistemas de clasificación para impulsar el marketing en línea son algunos ejemplos.
  • Deep Learning es una clase específica de aprendizaje automático que utiliza redes neuronales artificiales, a diferencia de los algoritmos orientados a tareas de aprendizaje automático. Esta tecnología hace posible la visión por ordenador, el reconocimiento de voz y el procesamiento del lenguaje natural.

Ahora que ya conocemos para qué sirven estos avances, podemos centrarnos en cómo benefician al manejo de base de datos. Bastaría con imaginar que un sistema de base de datos (DBMS) sea capaz de anticipar problemas operativos y tomar medidas prescriptivas para evitarlos, asignando recursos adicionales, agregando o eliminando índices, o ajustando automáticamente los planes de ejecución de consultas.

Es lo que se conoce como bases de datos autónomas impulsadas por aprendizaje automático, que pueden predecir cuándo puede ocurrir un problema y advertir al DBA o tomar medidas automáticamente.

Este tipo de sistema es capaz de aprovechar los datos recopilados de cargas de trabajo anteriores para ajustar nuevas, utilizando el machine learning para construir modelos que capturan cómo responde el DBMS a diferentes configuraciones. Se trata de un uso muy indicado para nuevas aplicaciones, que permite recomendar configuraciones que sirvena para aumentar las probabilidades de alcanzar un objetivo, como reducir la latencia o mejorar el rendimiento.

Las técnicas de aprendizaje automático y regresión estadística también pueden aplicarse al manejo de base de datos para identificar cuellos de botella y predecir el rendimiento de un conjunto de recursos determinado. Un ejemplo más de que la innovación nos ofrece formas muy diferentes de aumentar la eficiencia, rendimiento y agilidad de nuestros procesos de negocios.

Fuente imagen: stockimages / FreeDigitalPhotos.net

Post relacionados:

Topics: Big Data

¡Suscríbase!

Popular Posts

IR AL CENTRO DE   RECURSOS